Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.332
Filtrar
1.
BMC Microbiol ; 24(1): 110, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570789

RESUMO

BACKGROUND: All gastrointestinal pathogens, including Enterococcus faecalis and Enterococcus faecium, undergo adaptation processes during colonization and infection. In this study, we investigated by data-independent acquisition mass spectrometry (DIA-MS) two crucial adaptations of these two Enterococcus species at the proteome level. Firstly, we examined the adjustments to cope with bile acid concentrations at 0.05% that the pathogens encounter during a potential gallbladder infection. Therefore, we chose the primary bile acids cholic acid (CA) and chenodeoxycholic acid (CDCA) as well as the secondary bile acid deoxycholic acid (DCA), as these are the most prominent bile acids. Secondly, we investigated the adaptations from an aerobic to a microaerophilic environment, as encountered after oral-fecal infection, in the absence and presence of deoxycholic acid (DCA). RESULTS: Our findings showed similarities, but also species-specific variations in the response to the different bile acids. Both Enterococcus species showed an IC50 in the range of 0.01- 0.023% for DCA and CDCA in growth experiments and both species were resistant towards 0.05% CA. DCA and CDCA had a strong effect on down-expression of proteins involved in translation, transcription and replication in E. faecalis (424 down-expressed proteins with DCA, 376 down-expressed proteins with CDCA) and in E. faecium (362 down-expressed proteins with DCA, 391 down-expressed proteins with CDCA). Proteins commonly significantly altered in their expression in all bile acid treated samples were identified for both species and represent a "general bile acid response". Among these, various subunits of a V-type ATPase, different ABC-transporters, multi-drug transporters and proteins related to cell wall biogenesis were up-expressed in both species and thus seem to play an essential role in bile acid resistance. Most of the differentially expressed proteins were also identified when E. faecalis was incubated with low levels of DCA at microaerophilic conditions instead of aerobic conditions, indicating that adaptations to bile acids and to a microaerophilic atmosphere can occur simultaneously. CONCLUSIONS: Overall, these findings provide a detailed insight into the proteomic stress response of two Enterococcus species and help to understand the resistance potential and the stress-coping mechanisms of these important gastrointestinal bacteria.


Assuntos
Ácidos e Sais Biliares , Enterococcus faecium , Ácidos e Sais Biliares/farmacologia , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Ácido Desoxicólico/farmacologia , Proteômica , Ácido Cólico , Ácido Quenodesoxicólico/metabolismo , Enterococcus
2.
Antimicrob Agents Chemother ; 68(3): e0108323, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38349158

RESUMO

Infective endocarditis (IE) caused by Enterococcus spp. represents the third most common cause of IE, with high rates of relapse compared with other bacteria. Interestingly, late relapses (>6 months) have only been described in Enterococcus faecalis, but here we describe the first reported IE relapse with Enterococcus faecium more than a year (17 months) after the initial endocarditis episode. Firstly, by multi locus sequence typing (MLST), we demonstrated that both isolates (EF646 and EF641) belong to the same sequence type (ST117). Considering that EF641 was able to overcome starvation and antibiotic treatment conditions surviving for a long period of time, we performed bioinformatic analysis in identifying potential genes involved in virulence and stringent response. Our results showed a 13-nucleotide duplication (positions 1638-1650) in the gene relA, resulting in a premature stop codon, with a loss of 167 amino acids from the C-terminal domains of the RelA enzyme. RelA mediates the stringent response in bacteria, modulating levels of the alarmone guanosine tetraphosphate (ppGpp). The relA mutant (EF641) was associated with lower growth capacity, the presence of small colony variants, and higher capacity to produce biofilms (compared with the strain EF646), but without differences in antimicrobial susceptibility patterns according to standard procedures during planktonic growth. Instead, EF641 demonstrated tolerance to high doses of teicoplanin when growing in a biofilm. We conclude that all these events would be closely related to the long-term survival of the E. faecium and the late relapse of the IE. These data represent the first clinical evidence of mutations in the stringent response (relA gene) related with E. faecium IE relapse.


Assuntos
Endocardite Bacteriana , Endocardite , Enterococcus faecium , Infecções por Bactérias Gram-Positivas , Humanos , Enterococcus faecium/genética , Enterococcus faecium/metabolismo , Tipagem de Sequências Multilocus , Endocardite Bacteriana/tratamento farmacológico , Endocardite Bacteriana/microbiologia , Endocardite/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/metabolismo , Guanosina Tetrafosfato/metabolismo , Enterococcus faecalis/metabolismo , Recidiva , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia
3.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397099

RESUMO

Enterococcus faecalis is a bacterium which accompanies us from the first days of our life. As a commensal it produces vitamins, metabolizes nutrients, and maintains intestinal pH. All of that happens in exchange for a niche to inhabit. It is not surprising then, that the bacterium was and is used as an element of many probiotics and its positive impact on the human immune system and the body in general is hard to ignore. This bacterium has also a dark side though. The plasticity and relative ease with which one acquires virulence traits, and the ability to hide from or even deceive and use the immune system to spread throughout the body make E. faecalis a more and more dangerous opponent. The statistics clearly show its increasing role, especially in the case of nosocomial infections. Here we present the summarization of current knowledge about E. faecalis, especially in the context of its relations with the human immune system.


Assuntos
Enterococcus faecalis , Infecções por Bactérias Gram-Positivas , Humanos , Enterococcus faecalis/metabolismo , Amigos , Virulência , Fatores de Virulência/metabolismo , Sistema Imunitário/metabolismo , Infecções por Bactérias Gram-Positivas/microbiologia
4.
mBio ; 15(1): e0238423, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38078746

RESUMO

IMPORTANCE: Although E. faecalis is a common wound pathogen, its pathogenic mechanisms during wound infection are unexplored. Here, combining a mouse wound infection model with in vivo transposon and RNA sequencing approaches, we identified the E. faecalis purine biosynthetic pathway and galactose/mannose MptABCD phosphotransferase system as essential for E. faecalis acute replication and persistence during wound infection, respectively. The essentiality of purine biosynthesis and the MptABCD PTS is driven by the consumption of purine metabolites by E. faecalis during acute replication and changing carbohydrate availability during the course of wound infection. Overall, our findings reveal the importance of the wound microenvironment in E. faecalis wound pathogenesis and how these metabolic pathways can be targeted to better control wound infections.


Assuntos
Infecções Urinárias , Infecção dos Ferimentos , Animais , Camundongos , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Carboidratos , Purinas
5.
Sci Rep ; 13(1): 22870, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38129448

RESUMO

A mutant deficient in polynucleotide phosphorylase (PNPase) activity was previously constructed in Enterococcus faecalis 14; a strain producing a leaderless two-peptide enterocin DD14 (EntDD14). Here, we examined the impact of the absence of PNPase on the expression and synthesis of EntDD14, at the transcriptional and functional levels. As result, EntDD14 synthesis augmented in line with the growth curve, reaching a two- to fourfold increase in the ΔpnpA mutant compared to the E. faecalis 14 wild-type strain (WT). EntDD14 synthesis has reached its highest level after 9 h of growth in both strains. Notably, high expression level of the ddABCDEFGHIJ cluster was registered in ΔpnpA mutant. Transcriptional and in silico analyses support the existence of ddAB and ddCDEFGHIJ independent transcripts, and analysis of the fate of ddAB and ddCDEFGHIJ mRNAs indicated that the differences in mRNA levels and the high EntDD14 activity are likely due to a better stability of the two transcripts in the ΔpnpA mutant, which should result in a higher translation efficiency of the ddAB EntDD14 structural genes and their other protein determinants. Consequently, this study shows a potential link between the mRNA stability and EntDD14 synthesis, secretion and immunity in a genetic background lacking PNPase.


Assuntos
Bacteriocinas , Bacteriocinas/genética , Bacteriocinas/metabolismo , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Estabilidade de RNA/genética
6.
Mol Microbiol ; 120(6): 805-810, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38012814

RESUMO

Regulation of the first committed step of peptidoglycan precursor synthesis by MurA-enzyme homologs has recently taken center stage in many different bacteria. In different low-GC Gram-positive bacteria, regulation of this step has been shown to be regulated by phosphorylation of homologs of the IreB/ReoM regulatory protein by PASTA-domain Ser/Thr-protein kinases. In this issue, Mascari, Little, and Kristich determine this regulatory pathway and its links to resistance to cephalosporin ß-lactam antibiotics in the major human pathogen, Enterococcus faecalis (Efa). Unbiased genetic selections identified MurAA (MurA-family homolog) as the downstream target of IreB regulation in the absence of the IreK Ser/Thr-protein kinase. Physiological and biochemical approaches, including determination of MICs to ceftriaxone, Western blotting of MurAA cellular amounts, isotope incorporation into peptidoglycan sacculi, and thermal-shift binding assays of purified proteins, demonstrated that unphosphorylated IreB, together with proteins MurAB (MurZ-family homolog), and ReoY(Efa) negatively regulate MurAA stability and cellular amount by the ClpCP protease. Importantly, this paper supports the idea that ceftriaxone stimulates phosphorylation of IreB, which leads to increased cellular MurAA amount and precursor pathway flux required for E. faecalis cephalosporin resistance. Overall, findings in this paper significantly contribute to understanding variations of this central regulatory pathway in other low-GC Gram-positive bacteria.


Assuntos
Ceftriaxona , Enterococcus , Humanos , Fosforilação , Enterococcus/metabolismo , Peptidoglicano/metabolismo , Enterococcus faecalis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
7.
Microbiol Spectr ; 11(6): e0245523, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37855592

RESUMO

IMPORTANCE: Avian coccidiosis caused by Eimeria brings huge economic losses to the poultry industry. Although live vaccines and anti-coccidial drugs were used for a long time, Eimeria infection in chicken farms all over the world commonly occurred. The exploration of novel, effective vaccines has become a research hotspot. Eimeria parasites have complex life cycles, and effective antigens are particularly critical to developing anti-coccidial vaccines. Microneme proteins (MICs), secreted from microneme organelles located at the parasite apex, are considered immunodominant antigens. Eimeria tenella microneme 3 (EtMIC3) contains four conserved repeats (MARc1, MARc2, MARc3, and MARc4) and three divergent repeats (MARa, MARb, and MARd), which play a vital role during the Eimeria invasion. Enterococcus faecalis is a native probiotic in animal intestines and can regulate intestinal flora. In this study, BC1 and C4D domains of EtMIC3, BC1 or C4D fusing to dendritic cells targeting peptides, were surface-displyed by E. faecalis, respectively. Oral immunizations were performed to investigate immune protective effects against Eimeria infection.


Assuntos
Eimeria tenella , Doenças das Aves Domésticas , Vacinas , Animais , Galinhas , Enterococcus faecalis/metabolismo , Proteínas de Protozoários/metabolismo , Micronema , Vacinas/metabolismo
8.
Microb Pathog ; 184: 106387, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37821050

RESUMO

Bacteria communicate with each other through contact-dependent and contact-independent mechanisms. While certain contact-dependent mechanisms, such as Type IV and Type VI, have received considerable attention, nanotubes-mediated communication among gut bacteria remains largely unknown. The purpose of this study is to demonstrate the presence of nanotube production in both gut commensal and gut pathogenic bacteria. And also aims to show how Enterococcus faecalis utilizes nanotubes to combat Salmonella ser. Typhi (S. Typhi), a pathogen in the gut. The research findings suggest that the formation of nanotubes is an inherent trait observed in both Gram-positive and Gram-negative bacteria. Interestingly, bacteria generate nanotubes in dynamic environments, biofilms, and even within the gut of zebrafish. These nanotubes develops over time in accordance with the duration of incubation. Furthermore, E. faecalis effectively combats S. Typhi through mechanisms that depend on physical contact rather than indirect methods. Notably, E. faecalis protects zebrafish larvae from S. Typhi infections by reducing reactive oxygen species and cell death, and concurrently boosting the production of antioxidant enzymes. It is hypothesized that E. faecalis might eliminate S. Typhi by transferring toxic metabolites into the pathogen via nanotubes. Gene expression analysis highlights that proinflammatory markers such as TNF-α, IL-1ß, and IL-6 are elevated in Salmonella-infected larvae. However, co-treatment with E. faecalis counters this effect. Findings of this study underscores the significance of nanotubes as a vital machinery for bacterial communication and distribution of virulence factors. Exploring nanotubes-mediated communication at a molecular level could pave the way for innovative therapeutic interventions.


Assuntos
Enterococcus faecalis , Peixe-Zebra , Animais , Bactérias , Enterococcus faecalis/metabolismo , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Salmonella typhi
9.
Mol Microbiol ; 120(6): 811-829, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688380

RESUMO

The bacterial PASTA kinase, IreK, is required for intrinsic cephalosporin resistance in the Gram-positive opportunistic pathogen, Enterococcus faecalis. IreK activity is enhanced in response to cell wall stress, such as cephalosporin exposure. The downstream consequences of IreK activation are not well understood in E. faecalis, but recent work in other low-GC Gram-positive bacteria demonstrated PASTA kinase-dependent regulation of MurAA, an enzyme that performs the first committed step in the peptidoglycan synthesis pathway. Here, we used genetic suppressor selections to identify MurAA as a downstream target of IreK signaling in E. faecalis. Using complementary genetic and biochemical approaches, we demonstrated that MurAA abundance is regulated by IreK signaling in response to physiologically relevant cell wall stress to modulate substrate flux through the peptidoglycan synthesis pathway. Specifically, the IreK substrate, IreB, promotes proteolysis of MurAA through a direct physical interaction in a manner responsive to phosphorylation by IreK. MurAB, a homolog of MurAA, also promotes MurAA proteolysis and interacts directly with IreB. Our results therefore establish a connection between the cell wall stress sensor IreK and one critical physiological output to modulate peptidoglycan synthesis and drive cephalosporin resistance.


Assuntos
Enterococcus faecalis , Peptidoglicano , Enterococcus faecalis/metabolismo , Peptidoglicano/metabolismo , Resistência às Cefalosporinas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fosfotransferases/metabolismo , Parede Celular/metabolismo
10.
PLoS Pathog ; 19(8): e1011567, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37566589

RESUMO

Innate immune priming increases an organism's survival of a second infection after an initial, non-lethal infection. We used Drosophila melanogaster and an insect-derived strain of Enterococcus faecalis to study transcriptional control of priming. In contrast to other pathogens, the enhanced survival in primed animals does not correlate with decreased E. faecalis load. Further analysis shows that primed organisms tolerate, rather than resist infection. Using RNA-seq of immune tissues, we found many genes were upregulated in only primed flies, suggesting a distinct transcriptional program in response to initial and secondary infections. In contrast, few genes continuously express throughout the experiment or more efficiently re-activate upon reinfection. Priming experiments in immune deficient mutants revealed Imd is largely dispensable for responding to a single infection but needed to fully prime. Together, this indicates the fly's innate immune response is plastic-differing in immune strategy, transcriptional program, and pathway use depending on infection history.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Imunidade Inata , Tolerância Imunológica
11.
Int J Mol Sci ; 24(14)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37511337

RESUMO

Enterococcus species are known for their ability to form biofilms, which contributes to their survival in extreme environments and involvement in persistent bacterial infections, especially in the case of multi-drug-resistant strains. This review aims to provide a comprehensive understanding of the mechanisms underlying biofilm formation in clinically important species such as Enterococcus faecalis and the less studied but increasingly multi-drug-resistant Enterococcus faecium, and explores potential strategies for their eradication. Biofilm formation in Enterococcus involves a complex interplay of genes and virulence factors, including gelatinase, cytolysin, Secreted antigen A, pili, microbial surface components that recognize adhesive matrix molecules (MSCRAMMs), and DNA release. Quorum sensing, a process of intercellular communication, mediated by peptide pheromones such as Cob, Ccf, and Cpd, plays a crucial role in coordinating biofilm development by targeting gene expression and regulation. Additionally, the regulation of extracellular DNA (eDNA) release has emerged as a fundamental component in biofilm formation. In E. faecalis, the autolysin N-acetylglucosaminidase and proteases such as gelatinase and serin protease are key players in this process, influencing biofilm development and virulence. Targeting eDNA may offer a promising avenue for intervention in biofilm-producing E. faecalis infections. Overall, gaining insights into the intricate mechanisms of biofilm formation in Enterococcus may provide directions for anti-biofilm therapeutic research, with the purpose of reducing the burden of Enterococcus-associated infections.


Assuntos
Biofilmes , Enterococcus , Enterococcus/genética , Enterococcus/metabolismo , Enterococcus faecalis/metabolismo , Percepção de Quorum , Gelatinases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
12.
J Biosci Bioeng ; 136(1): 20-27, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37221113

RESUMO

Enterococcus faecalis strain DB-5 is a lactic acid bacterium newly isolated from the Japanese mandarin orange (mikan). The DB-5 strain produces organic acid from various carbohydrate sources including glycerol and starch. To gain deeper insights into its potential application in lactic acid fermentation (LAF), the genome and fermentation analyses of E. faecalis DB-5 were performed. Whole genome sequencing was carried out using the DNBSEQ platform. After trimming and assembly, the total size of the assembled genome was revealed to be 3,048,630 bp, distributed into 63 contigs with an N50 value of 203,673. The genome has 37.2% GC content, 2928 coding DNA sequences, and 54 putative RNA genes. The DB-5 strain harbored two l-lactate dehydrogenases (L-LDHs), both of which conserved the catalytic domain sequences. The optical purity measurement showed that strain DB-5 is homofermentative and produced only l-lactic acid (LA), which correlated with genome-based pathway analysis. To confirm its LA productivity at high temperatures, open repeated batch fermentation was performed at 45 °C using sucrose as a carbon source. The volumetric LA productivity of DB-5 was averaged at 3.66 g L-1 h-1 for 24 h during the 3rd to 11th fermentation cycles. E. faecalis DB-5 could efficiently convert around 94% of sucrose to LA throughout the fermentation cycles at 45 °C. These genomic characteristics and fermentation properties of E. faecalis DB-5 provide beneficial information for a deeper understanding of the functional properties of future high-temperature LAFs from biomass resources.


Assuntos
Citrus , Enterococcus faecalis , Ácido Láctico , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Fermentação , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Citrus/microbiologia
13.
Anal Bioanal Chem ; 415(17): 3593-3605, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37204445

RESUMO

Dual stable isotope probes of deuterium oxide and 13C fatty acid were demonstrated to probe the lipid biosynthesis cycle of a Gram-positive bacterium Enterococcus faecalis. As external nutrients and carbon sources often interact with metabolic processes, the use of dual-labeled isotope pools allowed for the simultaneous investigation of both exogenous nutrient incorporation or modification and de novo biosynthesis. Deuterium was utilized to trace de novo fatty acid biosynthesis through solvent-mediated proton transfer during elongation of the carbon chain while 13C-fatty acids were utilized to trace exogenous nutrient metabolism and modification through lipid synthesis. Ultra-high-performance liquid chromatography high-resolution mass spectrometry identified 30 lipid species which incorporated deuterium and/or 13C fatty acid into the membrane. Additionally, MS2 fragments of isolated lipids identified acyl tail position confirming enzymatic activity of PlsY in the incorporation of the 13C fatty acid into membrane lipids.


Assuntos
Enterococcus faecalis , Lipidômica , Enterococcus faecalis/metabolismo , Deutério , Ácidos Graxos/metabolismo , Carbono/metabolismo , Isótopos de Carbono/análise
14.
Commun Biol ; 6(1): 428, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072531

RESUMO

Control of cell size and morphology is of paramount importance for bacterial fitness. In the opportunistic pathogen Enterococcus faecalis, the formation of diplococci and short cell chains facilitates innate immune evasion and dissemination in the host. Minimisation of cell chain size relies on the activity of a peptidoglycan hydrolase called AtlA, dedicated to septum cleavage. To prevent autolysis, AtlA activity is tightly controlled, both temporally and spatially. Here, we show that the restricted localization of AtlA at the septum occurs via an unexpected mechanism. We demonstrate that the C-terminal LysM domain that allows the enzyme to bind peptidoglycan is essential to target this enzyme to the septum inside the cell before its translocation across the membrane. We identify a membrane-bound cytoplasmic protein partner (called AdmA) involved in the recruitment of AtlA via its LysM domains. This work reveals a moonlighting role for LysM domains, and a mechanism evolved to restrict the subcellular localization of a potentially lethal autolysin to its site of action.


Assuntos
Enterococcus faecalis , Peptidoglicano , Enterococcus faecalis/metabolismo , Peptidoglicano/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Separação Celular
15.
J Hazard Mater ; 451: 131087, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36889077

RESUMO

Horizontal gene transfer (HGT) mediated by conjugative plasmids greatly contributes to bacteria evolution and the transmission of antibiotic resistance genes (ARGs). In addition to the selective pressure imposed by extensive antibiotic use, environmental chemical pollutants facilitate the dissemination of antibiotic resistance, consequently posing a serious threat to the ecological environment. Presently, the majority of studies focus on the effects of environmental compounds on R plasmid-mediated conjugation transfer, and pheromone-inducible conjugation has largely been neglected. In this study, we explored the pheromone effect and potential molecular mechanisms of estradiol in promoting the conjugative transfer of pCF10 plasmid in Enterococcus faecalis. Environmentally relevant concentrations of estradiol significantly increased the conjugative transfer of pCF10 with a maximum frequency of 3.2 × 10-2, up to 3.5-fold change compared to that of control. Exposure to estradiol induced the activation of pheromone signaling cascade by increasing the expression of ccfA. Furthermore, estradiol might directly bind to the pheromone receptor PrgZ and promote pCF10 induction and finally enhance the conjugative transfer of pCF10. These findings cast valuable insights on the roles of estradiol and its homolog in increasing antibiotic resistance and the potential ecological risk.


Assuntos
Antibacterianos , Feromônios , Antibacterianos/metabolismo , Feromônios/farmacologia , Feromônios/genética , Feromônios/metabolismo , Estradiol/farmacologia , Estradiol/metabolismo , Plasmídeos/genética , Resistência Microbiana a Medicamentos/genética , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Transferência Genética Horizontal
16.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901915

RESUMO

Continuous consumption of high-calorie meals causes lipid accumulation in the liver and liver damage, leading to non-alcoholic fatty liver disease (NAFLD). A case study of the hepatic lipid accumulation model is needed to identify the mechanisms underlying lipid metabolism in the liver. In this study, the prevention mechanism of lipid accumulation in the liver of Enterococcus faecalis 2001 (EF-2001) was extended using FL83B cells (FL83Bs) and high-fat diet (HFD)-induced hepatic steatosis. EF-2001 treatment inhibited the oleic acid (OA) lipid accumulation in FL83B liver cells. Furthermore, we performed lipid reduction analysis to confirm the underlying mechanism of lipolysis. The results showed that EF-2001 downregulated proteins and upregulated AMP-activated protein kinase (AMPK) phosphorylation in the sterol regulatory element-binding protein 1c (SREBP-1c) and AMPK signaling pathways, respectively. The effect of EF-2001 on OA-induced hepatic lipid accumulation in FL83Bs enhanced the phosphorylation of acetyl-CoA carboxylase and reduced the levels of lipid accumulation proteins SREBP-1c and fatty acid synthase. EF-2001 treatment increased the levels of adipose triglyceride lipase and monoacylglycerol during lipase enzyme activation, which, when increased, contributed to increased liver lipolysis. In conclusion, EF-2001 inhibits OA-induced FL83B hepatic lipid accumulation and HFD-induced hepatic steatosis in rats through the AMPK signaling pathway.


Assuntos
Lipólise , Hepatopatia Gordurosa não Alcoólica , Ratos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Dieta Hiperlipídica , Enterococcus faecalis/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Temperatura Alta , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metabolismo dos Lipídeos , Transdução de Sinais , Lipídeos/farmacologia
17.
J Transl Med ; 21(1): 72, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732757

RESUMO

BACKGROUND: Enterococcus faecalis (Efa) has been shown to be a "driver bacteria" in the occurrence and development of colorectal cancer (CRC). This study aims to explore the effect of specific metabolites of Efa on CRC. METHODS: The pro-tumor effects of Efa were assessed in colonic epithelial cells. The tumor-stimulating molecule produced by Efa was identified using liquid chromatography mass spectrometry (LC-MS). The proliferative effect of metabolites on CRC cells in vitro was assayed as well. The concentration of vascular endothelial growth factor A (VEGFA) and interleukin-8 (IL-8) was determined using enzyme-linked immunosorbent assay (ELISA). Tubular formation assay of human umbilical vein endothelial cells (HUVEC) and cell migration assay were applied to study angiogenesis. Additionally, western blot analysis was used to investigate key regulatory proteins involved in the angiogenesis pathway. Tumor growth was assessed using mouse models with two CRC cells and human colon cancer organoid. RESULTS: Co-incubation with the conditioned medium of Efa increased the proliferation of cultured CRC cells. Biliverdin (BV) was determined as the key metabolite produced by Efa using LC-MS screening. BV promoted colony formation and cell proliferation and inhibited cell cycle arrest of cultured CRC cells. BV significantly increased the expression level of IL-8 and VEGFA by regulating the PI3K/AKT/mTOR signaling pathway, leading to the acceleration of angiogenesis in CRC. The up-regulation of proliferation and angiogenesis by BV were also confirmed in mice. CONCLUSION: In conclusion, BV, as the tumor-stimulating metabolite of Efa, generates proliferative and angiogenic effects on CRC, which is mainly mediated by the activation of PI3K/AKT/mTOR.


Assuntos
Neoplasias Colorretais , Fator A de Crescimento do Endotélio Vascular , Humanos , Animais , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Neoplasias Colorretais/patologia , Interleucina-8 , Enterococcus faecalis/metabolismo , Biliverdina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neovascularização Patológica/patologia , Serina-Treonina Quinases TOR/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proliferação de Células
18.
Antimicrob Agents Chemother ; 67(2): e0087122, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36719223

RESUMO

Ampicillin-ceftriaxone has become a first-line therapy for Enterococcus faecalis endocarditis. We characterized the penicillin-binding protein (PBP) profiles of various E. faecalis strains and tested for synergy to better inform beta-lactam options for the treatment of E. faecalis infections. We assessed the affinity of PBP2B from elevated-MIC strain E. faecalis LS4828 compared to type strain JH2-2 using the fluorescent beta-lactam Bocillin FL. We also characterized pbp4 and pbpA structures and PBP4 and PBP2B expression and used deletion and complementation studies to assess the impact of PBP2B on the levels of resistance. We tested penicillin-susceptible and -resistant E. faecalis isolates against ceftriaxone or ceftaroline combinations with other beta-lactams in 24-h time-kill studies. Two penicillin-susceptible strains (JH2-2 and L2052) had identical pbp sequences and similar PBP expression levels. One reduced-penicillin-susceptibility strain (L2068) had pbp sequences identical to those of the susceptible strains but expressed more PBP4. The second decreased-penicillin-susceptibility strain (LS4828) had amino acid substitutions in both PBP4 and PBP2B and expressed increased quantities of both proteins. PBP2B did not appear to contribute significantly to the elevated beta-lactam MICs. No synergy was demonstrable against the strains with both mutated PBPs and increased expression (L2068 and LS4828). Meropenem plus ceftriaxone or ertapenem plus ceftriaxone demonstrated the most consistent synergistic activity. PBP2B of strain LS4828 does not contribute significantly to reduced penicillin susceptibility. Neither the MIC nor the level of PBP expression correlated directly with the identified synergistic combinations when tested at static subinhibitory concentrations.


Assuntos
Enterococcus faecalis , beta-Lactamas , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , beta-Lactamas/farmacologia , beta-Lactamas/metabolismo , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Ceftriaxona/farmacologia , Penicilinas/farmacologia , Penicilinas/metabolismo , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo
19.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675049

RESUMO

Enterocin DD14 (EntDD14) is a two-peptide leaderless bacteriocin produced by the Enterococcus faecalis 14 strain previously isolated from meconium. This bacteriocin is mainly active against Gram-positive bacteria. Leaderless bacteriocins do not undergo post-translational modifications and are therefore immediately active after their synthesis. As a result, the cells that produce such bacteriocins have developed means of protection against them which often involve transport systems. In this and our previous work, we constructed different mutants deleted in the genes involved in the transport functions, thus covering all the supposed components of this transport system, using Listeria innocua ATCC 33090 as the indicator strain to assess the activity of externalized EntDD14. We also assessed the self-resistance of the WT and all its engineered derivative mutants against EntDD14, provided extracellularly, in order to evaluate their self-resistance. The results obtained highlight that the ABC transporter constituted by the DdG, H, I, and J proteins contributes to EntDD14 export as well as resistance to an external supply of EntDD14. Our results also have established the essential role of the DdE and DdF proteins as primary transporters dedicated to the externalization of EntDD14. Moreover, the in silico data showed that DdE and DdF appear to assemble in a formation that forms an essential channel for the exit of EntDD14. This channel DdEF may interact with the ABC transporter DdGHIJ in order to control the flow of bacteriocin across the membrane, although the nature of this interaction remains to be elucidated.


Assuntos
Bacteriocinas , Bacteriocinas/genética , Bacteriocinas/farmacologia , Bacteriocinas/metabolismo , Peptídeos/metabolismo , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo
20.
mBio ; 14(1): e0307322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36629455

RESUMO

The bacterial cell membrane is an interface for cell envelope synthesis, protein secretion, virulence factor assembly, and a target for host cationic antimicrobial peptides (CAMPs). To resist CAMP killing, several Gram-positive pathogens encode the multiple peptide resistance factor (MprF) enzyme that covalently attaches cationic amino acids to anionic phospholipids in the cell membrane. While E. faecalis encodes two mprF paralogs, MprF2 plays a dominant role in conferring resistance to killing by the CAMP human ß-defensin 2 (hBD-2) in E. faecalis strain OG1RF. The goal of the current study is to understand the broader lipidomic and functional roles of E. faecalis mprF. We analyzed the lipid profiles of parental wild-type and mprF mutant strains and show that while ΔmprF2 and ΔmprF1 ΔmprF2 mutants completely lacked cationic lysyl-phosphatidylglycerol (L-PG), the ΔmprF1 mutant synthesized ~70% of L-PG compared to the parent. Unexpectedly, we also observed a significant reduction of PG in ΔmprF2 and ΔmprF1 ΔmprF2. In the mprF mutants, particularly ΔmprF1 ΔmprF2, the decrease in L-PG and phosphatidylglycerol (PG) is compensated by an increase in a phosphorus-containing lipid, glycerophospho-diglucosyl-diacylglycerol (GPDGDAG), and D-ala-GPDGDAG. These changes were accompanied by a downregulation of de novo fatty acid biosynthesis and an accumulation of long-chain acyl-acyl carrier proteins (long-chain acyl-ACPs), suggesting that the suppression of fatty acid biosynthesis was mediated by the transcriptional repressor FabT. Growth in chemically defined media lacking fatty acids revealed severe growth defects in the ΔmprF1 ΔmprF2 mutant strain, but not the single mutants, which was partially rescued through supplementation with palmitic and stearic acids. Changes in lipid homeostasis correlated with lower membrane fluidity, impaired protein secretion, and increased biofilm formation in both ΔmprF2 and ΔmprF1 ΔmprF2, compared to the wild type and ΔmprF1. Collectively, our findings reveal a previously unappreciated role for mprF in global lipid regulation and cellular physiology, which could facilitate the development of novel therapeutics targeting MprF. IMPORTANCE The cell membrane plays a pivotal role in protecting bacteria against external threats, such as antibiotics. Cationic phospholipids such as lysyl-phosphatidyglycerol (L-PG) resist the action of cationic antimicrobial peptides through electrostatic repulsion. Here we demonstrate that L-PG depletion has several unexpected consequences in Enterococcus faecalis, including a reduction of phosphatidylglycerol (PG), enrichment of a phosphorus-containing lipid, reduced fatty acid synthesis accompanied by an accumulation of long-chain acyl-acyl carrier proteins (long chain acyl-ACPs), lower membrane fluidity, and impaired secretion. These changes are not deleterious to the organism as long as exogenous fatty acids are available for uptake from the culture medium. Our findings suggest an adaptive mechanism involving compensatory changes across the entire lipidome upon removal of a single phospholipid modification. Such adaptations must be considered when devising antimicrobial strategies that target membrane lipids.


Assuntos
Antibacterianos , Anti-Infecciosos , Humanos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Enterococcus faecalis/metabolismo , Farmacorresistência Bacteriana , Fosfolipídeos/metabolismo , Anti-Infecciosos/metabolismo , Ácidos Graxos/metabolismo , Fosfatidilgliceróis/metabolismo , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Cátions/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...